Respuestas sección 5.7

Ejercicios 1 al 10. Demostración de identidades trigonométricas.

  1. sen2  θ(1+cot2  θ)1sen2  θcsc2  θsen2  θ1sen2  θ11\color{black}\begin{aligned} sen^2\;{⁡\theta}\left(1+cot^2\;{\theta}\right) &\equiv 1\\[0.3cm] sen^2\;{⁡\theta}\cdot csc^2\;{\theta} &\equiv \\[0.3cm] {\color{Red}\bcancel {{\color{black}sen^2\;{⁡\theta}}}}\cdot\cfrac{1}{{\color{Red}\bcancel {{\color{black}sen^2\;{\theta}}}}} &\equiv\\[0.3cm] 1 &\equiv 1 \end{aligned}
  2. tan  θ+cot  θsec  θcsc  θsen  θcos  θ+cos  θsen  θsen2  θ+cos2  θcos  θsen  θ1cos  θsen  θsec  θcsc  θsec  θcsc  θ\hspace{0.1cm}\color{black}\begin{aligned} tan\;{⁡\theta}+cot\;{⁡\theta} &\equiv sec\;{⁡\theta}\cdot csc\;{⁡\theta}\\[0.3cm] \cfrac{sen\;{⁡\theta}}{cos\;{⁡\theta}}+\cfrac{cos\;{⁡\theta}}{sen\;{⁡\theta}} &\equiv \\[0.3cm] \cfrac{sen^2\;{⁡\theta}+cos^2\;{⁡\theta}}{cos\;{⁡\theta}\cdot sen\;{⁡\theta}}&\equiv\\[0.3cm] \cfrac{1}{cos\;{⁡\theta}\cdot sen\;{⁡\theta}}&\equiv\\[0.3cm] sec\;{⁡\theta}\cdot csc\;{⁡\theta} &\equiv sec\;{⁡\theta}\cdot csc\;{⁡\theta} \end{aligned}
  3. tan  θ+cos  θ1+sen  θsec  θsen  θcos  θ+sen  θ1+sen  θsen  θ+sen2  θ+cos2  θcos  θ(1+sen  θ)sen  θ+1cos  θ(1+sen  θ)sec  θsec  θ\color{black}\begin{aligned} tan\;{⁡\theta}+\cfrac{cos\;{⁡\theta}}{1+sen\;{⁡\theta}} &\equiv sec\;{⁡\theta}\\[0.3cm] \cfrac{sen\;{⁡\theta}}{cos\;{⁡\theta}}+\cfrac{sen\;{⁡\theta}}{1+sen\;{⁡\theta}}&\equiv \\[0.3cm] \cfrac{sen\;{⁡\theta}+sen^2\;{⁡\theta}+cos^2\;{⁡\theta}}{cos\;{⁡\theta}\cdot \left(1+sen\;{⁡\theta}\right)}&\equiv\\[0.3cm] \cfrac{{\color{Red}\bcancel {{\color{black}sen\;{⁡\theta}+1}}}}{cos\;{⁡\theta}\cdot \left({\color{Red}\bcancel {{\color{black}1+sen\;{⁡\theta}}}}\right)}&\equiv\\[0.3cm] sec\;{⁡\theta} &\equiv sec\;{⁡\theta} \end{aligned}
  4. 1+sen  α1sen  α1sen  α1+sen  α4tan  αsec  α(1+sen  α)2(1sen  α)21sen2  α1+2sen  α+sen2  α1+2sen  αsen2  αcos2  α4senαcos2  α4senαcos  α1cosα4tanα1cosα4tanαsec  α4tanαsec  α\color{black}\begin{aligned} \cfrac{1+sen\;{⁡\alpha}}{1-sen\;{⁡\alpha}}-\cfrac{1-sen\;{⁡\alpha}}{1+sen\;{⁡\alpha}} &\equiv 4\cdot tan\;{⁡\alpha}\cdot sec\;{⁡\alpha}\\[0.3cm] \cfrac{\left(1+sen\;{⁡\alpha}\right)^2-\left(1-sen\;{⁡\alpha}\right)^2}{1-sen^2\;{⁡\alpha}}&\equiv \\[0.3cm] \cfrac{{\color{Red}\bcancel {{\color{black}1}}}+2sen\;{⁡\alpha}+{\color{Red}\bcancel {{\color{black}sen^2\;{⁡\alpha}}}}-{\color{Red}\bcancel {{\color{black}1}}}+2sen\;{⁡\alpha}-{\color{Red}\bcancel {{\color{black}sen^2\;{⁡\alpha}}}}}{cos^2\;{⁡\alpha}}&\equiv\\[0.3cm] \cfrac{4\cdot sen{\alpha}}{cos^2\;{⁡\alpha}}&\equiv\\[0.3cm] 4\cdot\cfrac{ sen{\alpha}}{cos\;{⁡\alpha}}\cdot \cfrac{1}{cos{\alpha}}&\equiv\\[0.3cm] 4\cdot tan{\alpha}\cdot \cfrac{1}{cos{\alpha}} &\equiv \\[0.3cm] 4\cdot tan{\alpha}\cdot sec\;{⁡\alpha} &\equiv 4\cdot tan{\alpha}\cdot sec\;{⁡\alpha} \end{aligned}
  5. sen  θ(csc  θsen  θ)cos2  θsen  θ(1sen  θsen  θ)sen  θ(1sen2  θsen  θ)cos2  θcos2  θ\color{black}\begin{aligned} sen\;{⁡\theta}\left(csc\;{⁡\theta}-sen\;{\theta}\right) &\equiv cos^2\;{⁡\theta}\\[0.3cm] sen\;{⁡\theta}\cdot\left(\cfrac{1}{sen\;{⁡\theta}}-sen\;{⁡\theta}\right) &\equiv \\[0.3cm] {\color{Red}\bcancel {{\color{black}sen\;{⁡\theta}}}}\cdot\left(\cfrac{1-sen^2\;{⁡\theta}}{{\color{Red}\bcancel {{\color{black}sen\;{⁡\theta}}}}}\right) &\equiv \\[0.3cm] cos^2\;{⁡\theta} &\equiv cos^2\;{⁡\theta} \end{aligned}
  6. (1cos2  θ)(1+cot2  θ)1sen2  θcsc2  θsen2  θ1sen2  θ11\color{black}\begin{aligned} \left(1-cos^2\;{⁡\theta}\right)\cdot\left(1+cot^2\;{\theta}\right) &\equiv 1\\[0.3cm] sen^2\;{⁡\theta}\cdot csc^2\;{\theta} &\equiv \\[0.3cm] {\color{Red}\bcancel {{\color{black}sen^2\;{⁡\theta}}}}\cdot\cfrac{1}{{\color{Red}\bcancel {{\color{black}sen^2\;{\theta}}}}} &\equiv\\[0.3cm] 1 &\equiv 1 \end{aligned}
  7. sen  βcsc  β+cos  βsec  β1sen  β11sen  β+cos  β11cos  βsen2  β+cos2  β11\color{black}\begin{aligned} \cfrac{sen\;{⁡\beta}}{csc\;{⁡\beta}}+\cfrac{cos\;{⁡\beta}}{sec\;{⁡\beta}} &\equiv 1\\[0.3cm] \cfrac{\cfrac{sen\;{⁡\beta}}{1}}{\cfrac{1}{sen\;{⁡\beta}}}+\cfrac{\cfrac{cos\;{⁡\beta}}{1}}{\cfrac{1}{cos\;{⁡\beta}}} &\equiv \\[0.3cm] sen^2\;{⁡\beta}+cos^2\;{⁡\beta} &\equiv \\[0.3cm] 1 &\equiv 1 \end{aligned}
  1. sec  βtan  β+cot  βsen  β1cos  βsen  βcos  β+cos  βsen  β1cos  βsen2  β+cos2  βsen  βcos  β1sen2  β+cos2  βsen  β11sen  βsen  βsen  β\color{black}\begin{aligned} \cfrac{sec\;{⁡\beta}}{tan\;{⁡\beta}+cot\;{⁡\beta}} &\equiv sen\;{⁡\beta}\\[0.3cm] \cfrac{\cfrac{1}{cos\;{⁡\beta}}}{\cfrac{sen\;{⁡\beta}}{cos\;{⁡\beta}}+\cfrac{cos\;{⁡\beta}}{sen\;{⁡\beta}}} &\equiv \\[0.3cm] \cfrac{\cfrac{1}{{\color{Red}\bcancel {{\color{black}cos\;{⁡\beta}}}}}}{\cfrac{sen^2\;{⁡\beta}+cos^2\;{⁡\beta}}{sen\;{⁡\beta}\cdot {\color{Red}\bcancel {{\color{black}cos\;{⁡\beta}}}}}} &\equiv \\[0.3cm] \cfrac{1}{\cfrac{sen^2\;{⁡\beta}+cos^2\;{⁡\beta}}{sen\;{⁡\beta} }} &\equiv \\[0.3cm] \cfrac{1}{\cfrac{1}{sen\;{⁡\beta} }} &\equiv \\[0.3cm] sen\;{⁡\beta} &\equiv sen\;{⁡\beta} \end{aligned}
  2. tan  β+cot  βtan  βcot  βsec2  βtan2  β1sen  βcos  β+cos  βsen  βsen  βcos  βcos  βsen  β1cos2  βsen2  βcos2  β1sen2  β+cos2  βsen  βcos  βsen2  βcos2  βsen  βcos  β1cos2  βsen2  βcos2  βcos2  βsen2  β+cos2  βsen  βcos  βsen2  βcos2  βsen  βcos  β1cos2  βsen2  βcos2  βcos2  βsen2  β+cos2  βsen2  βcos2  β1sen2  βcos2  β1sen2  βcos2  β1sen2  βcos2  β\color{black}\begin{aligned} \cfrac{tan\;{⁡\beta}+cot\;{⁡\beta}}{tan\;{⁡\beta}-cot\;{⁡\beta}}&\equiv \cfrac{sec^2\;{⁡\beta}}{tan^2\;{⁡\beta}-1}\\[0.4cm] \cfrac{\cfrac{sen\;{⁡\beta}}{cos\;{⁡\beta}}+\cfrac{cos\;{⁡\beta}}{sen\;{⁡\beta}}}{\cfrac{sen\;{⁡\beta}}{cos\;{⁡\beta}}-\cfrac{cos\;{⁡\beta}}{sen\;{⁡\beta}}} &\equiv \cfrac{\cfrac{1}{cos^2\;{⁡\beta}}}{\cfrac{sen^2\;{⁡\beta}}{cos^2\;{⁡\beta}}-1}\\[1cm] \cfrac{\cfrac{sen^2\;{⁡\beta}+cos^2\;{⁡\beta}}{sen\;{⁡\beta}\cdot cos\;{⁡\beta}}}{\cfrac{sen^2\;{⁡\beta}-cos^2\;{⁡\beta}}{sen\;{⁡\beta}\cdot cos\;{⁡\beta}}} &\equiv \cfrac{\cfrac{1}{cos^2\;{⁡\beta}}}{\cfrac{sen^2\;{⁡\beta}-cos^2\;{⁡\beta}}{cos^2\;{⁡\beta}}}\\[1cm] \cfrac{\cfrac{sen^2\;{⁡\beta}+cos^2\;{⁡\beta}}{{\color{Red}\bcancel {{\color{black}sen\;{⁡\beta}\cdot cos\;{⁡\beta}}}}}}{\cfrac{sen^2\;{⁡\beta}-cos^2\;{⁡\beta}}{{\color{Red}\bcancel {{\color{black}sen\;{⁡\beta}\cdot cos\;{⁡\beta}}}}}} &\equiv \cfrac{\cfrac{1}{{\color{Red}\bcancel {{\color{black}cos^2\;{⁡\beta}}}}}}{\cfrac{sen^2\;{⁡\beta}-cos^2\;{⁡\beta}}{{\color{Red}\bcancel {{\color{black}cos^2\;{⁡\beta}}}}}}\\[1cm] \cfrac{sen^2\;{⁡\beta}+cos^2\;{⁡\beta}}{sen^2\;{⁡\beta}-cos^2\;{⁡\beta}} &\equiv \cfrac{1}{sen^2\;{⁡\beta}-cos^2\;{⁡\beta}}\\[0.4cm] \color{brown}\cfrac{1}{sen^2\;{⁡\beta}-cos^2\;{⁡\beta}} &\equiv \color{brown}\cfrac{1}{sen^2\;{⁡\beta}-cos^2\;{⁡\beta}}\\[1cm] \end{aligned}
  3. 12sen2  θ1tan2  θ1+tan2  θsen2  θ+cos2  θ2sen2  θcos2  θsen2  θcos2  θsen2  θ1cos2  θsen2  θsen2  θ+cos2  θcos2  θcos2  θsen2  θcos2  θsen2  θcos2  θ+cos2  θcos2  θ1tan2  θ1+tan2  θ1tan2  θ1+tan2  θ\color{black}\begin{aligned} 1-2sen^2\;{⁡\theta} &\equiv \cfrac{1-tan^2\;{⁡\theta}}{1+tan^2\;{⁡\theta}}\\[0.3cm] sen^2\;{⁡\theta}+cos^2\;{⁡\theta}-2sen^2\;{⁡\theta} &\equiv \\[0.3cm] cos^2\;{⁡\theta}-sen^2\;{⁡\theta} &\equiv \\[0.3cm] \cfrac{cos^2\;{⁡\theta}-sen^2\;{⁡\theta}}{1} &\equiv \\[0.3cm] \cfrac{cos^2\;{⁡\theta}-sen^2\;{⁡\theta}}{sen^2\;{⁡\theta}+cos^2\;{⁡\theta}} &\equiv \\[0.3cm] \cfrac{\cfrac{{\color{Red}\bcancel {{\color{black}cos^2\;{⁡\theta}}}}}{{\color{Red}\bcancel {{\color{black}cos^2\;{⁡\theta}}}}}-\cfrac{sen^2\;{⁡\theta}}{cos^2\;{⁡\theta}}}{\cfrac{sen^2\;{⁡\theta}}{cos^2\;{⁡\theta}}+\cfrac{{\color{Red}\bcancel {{\color{black}cos^2\;{⁡\theta}}}}}{{\color{Red}\bcancel {{\color{black}cos^2\;{⁡\theta}}}}}} &\equiv \\[0.3cm] \cfrac{1-tan^2\;{⁡\theta}}{1+tan^2\;{⁡\theta}} &\equiv \cfrac{1-tan^2\;{⁡\theta}}{1+tan^2\;{⁡\theta}} \end{aligned}